< SRI KRISHNA INSTITUTE OF TECHNOLOGY, BENGALURU>

COURSE PLAN

Academic Year 2019-20

Program:	B E - CIVIL ENGINEERING
Semester:	4
Course Code:	$18 C V 43$
Course Title:	APPLIED HYDRAULICS
Credit /L-T-P:	$3 / 3-0-0$
Total Contact Hours:	60
Course Plan Author:	YASHASWINI RV

Academic Evaluation and Monitoring Cell

> No.29, Chimney Hills, Hesaragatta Road, Chikkabanavara Bangalore -560090, Karnataka, India Phone/ Fax: +91-08023721315/23721477 Web: www.skitorg.in

Table of Contents

A. COURSE INFORMATION 3

1. Course Overview 3
2. Course Content. 3
3. Course Material 4
4. Course Prerequisites. 5
5. Content for Placement, Profession, HE and GATE 5
B. OBE PARAMETERS 5
6. Course Outcomes. 5
7. Course Applications 6
8. Articulation Matrix 6
9. Curricular Gap and Content 6
C. COURSE ASSESSMENT. 7
10. Course Coverage 7
11. Continuous Internal Assessment (CIA) 7
D1. TEACHING PLAN - 1 7
Module - 1 7
Module - 2. 9
E1. CIA EXAM - 1 11
a. Model Question Paper - 1 11
b. Assignment -1 11
D2. TEACHING PLAN - 2 13
Module-3 13
Module - 4 14
E2. CIA EXAM - 2 16
a. Model Question Paper - 2 16
b. Assignment - 2 17
D3. TEACHING PLAN - 3 20
Module - 5. 20
E3. CIA EXAM - 3 22
a. Model Question Paper - 3 22
b. Assignment - 3 22
F. EXAM PREPARATION. 24
12. University Model Question Paper 24
13. SEE Important Questions 25
Course Outcome Computation. 28
Academic Year: 2019-20 28
Odd / Even semester 28
Note : Remove "Table of Content" before including in CP Book
Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	B.E	Program:	CV
Year / Semester :	4	Academic Year:	$2019-20$
Course Title:	Applied Hydraulics	Course Code:	18 CV 43
Credit / L-T-P:	$4 / 4-0-0$	SEE Duration:	180 min
Total Contact Hours:	50	SEE Marks:	60
CIA Marks:	40	Assignment	$1 / 2$ Module
Course Plan Author:	Yashaswini R.V	Sign	Dt : 02.02.2020
Checked By:	Priyankashri KN	Sign	Dt :10.02.2020

Note: Define CIA and SEE \% targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G .

Mod ule	Content	Teachi ng Hours	Identified Module Concepts	Blooms Learning Levels
1	Dimensional analysis and similitude: Dimensional homogeneity, Non Dimensional parameter, Rayleigh methods and Buckingham theorem, dimensional analysis, choice of variables, examples on various applications. Model analysis: Model analysis, similitude, types of similarities, force ratios, similarity laws, model classification, Reynolds model, Froude's model, Euler's Model, Webber's model, Mach model, scale effects, Distorted models. Numerical problems on Reynold's, and Froude's Model Buoyancy and Flotation: Buoyancy, Force and Centre of Buoyancy, Metacentre and Metacentric height, Stability of submerged and floating bodies, Determination of Metacentric height, Experimental and theoretical method, Numerical problems	10	Dimentional Analysis, Buoyancy	L4
2	Classification of flow through channels, Chezy's and Manning's equation for flow through open channel, Most economical channel sections, Uniform flow through Open channels, Numerical Problems. Specific Energy and Specific energy curve, Critical flow and corresponding critical parameters, Metering flumes, Numerical Problems	10	Uniform flow in channels, Specific Energy	L4
3	Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles, Mild, steep, critical, horizontal and adverse slope profiles, Numerical problems, Control sections	10	Nonuniform Flow, GVF Profiles	L4
4	Hydraulic Machines: Introduction, Impulse-Momentum equation. Direct impact of a jet on a stationary and moving curved vanes, Introduction to concept of velocity triangles, impact of jet on a series of curved vanes- Problems 21 Turbines - Impulse Turbines: Introduction to turbines, General lay out of a hydroelectric plant, Heads and Efficiencies, classification of turbines. Pelton wheel components, working principle and velocity triangles. Maximum power, efficiency, working proportions - Numerical problems	10	Velocity Triangles, Pelton turbine	L4
	Reaction Turbines and Pumps: Radial flow reaction turbines: (i) Francis turbine Descriptions, working proportions and design, Numerical problems. (ii) Kaplan turbine- Descriptions, working proportions and design, Numerical problems. Draft tube theory and unit quantities. (No problems) Centrifugal pumps: Components and Working of centrifugal pumps,	10	Francis turbine, Pumps	L4

Types of centrifugal pumps, Work done by the impeller, Heads and Efficiencies, Minimum starting speed of centrifugal pump, Numerical problems, Multi-stage pumps.				
$\mathbf{-}$	Total	$\mathbf{5 0}$	-	

3. Course Material

Books \& other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15-30 minutes
2. Design: Simulation and design tools used - software tools used ; Free / open source
3. Research: Recent developments on the concepts - publications in journals; conferences etc.

Modul es	Details	Chapters in book	Availability
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
	Text books		In Lib / In Dept
$\begin{gathered} 1,2,3,4 \\ 5 \end{gathered}$	P N Modi and S M Seth, "Hydraulics and Fluid Mechan ics, including Hydraulic Machines", 20th edition, 2015, Standard Book House, New Delhi		In Lib
$\begin{gathered} 1,2,3,4 \\ 5 \\ \hline \end{gathered}$	R.K. Bansal, "A Text book of Fluid Mechanics and Hy draulic Machines", Laxmi Publications, New Delhi		In dept
$\begin{gathered} 1,2,3,4 \\ 5 \\ \hline \end{gathered}$	S K SOM and G Biswas, "Introduction to Fluid Mechan ics and Fluid Machines", Tata McGraw Hill,New Delhi		Not Available
B	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
$\begin{gathered} 1,2,3,4 \\ 5 \end{gathered}$	K Subramanya, "Fluid Mechanics and Hydraulic Machin es", Tata McGraw Hill Publishing Co. Ltd.		In Lib
$\begin{gathered} 1,2,3,4 \\ 5 \\ \hline \end{gathered}$	Mohd. Kaleem Khan, "Fluid Mechanics and Machinery", Oxford University Press		In Lib
$\begin{gathered} 1,2,3,4 \\ 5 \\ \hline \end{gathered}$	C.S.P. Ojha, R. Berndtsson, and P.N. Chandramouli, "Fluid Mechanics and Machinery", Oxford University Publication - 2010		Not Available
	J.B. Evett, and C. Liu, "Fluid Mechanics and Hydraulics ", McGraw-Hill Book Company.-2009.		Not Available
C	Concept Videos or Simulation for Understanding	-	-
C1	https://www.youtube.com/watch?v=tV3ShM1fo5Y		
C2	https://www.youtube.com/watch?v=xjYfNvYW/mDo		
C3	https://www.youtube.com/watch?v=X_Gt4-q8wLs		
C4	https://www.youtube.com/watch?v=2HkJr_7vPc4		
C5	```https://www.youtube.com/watch? \(\mathrm{V}=\mathrm{j} 3-\) 2aQ6376c\&list=PLSNhedsleX11ykZJbtlIVDH8kZXqB_tO- \&index=6```		
C6	https://www.youtube.com/watch?V=VbsZRqpcJ4w		
C7	https://www.youtube.com/watch?V=3RGguSotX3E		
C8	https://www.youtube.com/watch?v=YgVfJscGj4k		
C9	https://www.youtube.com/watch?v=V3Be5iu7W/JE		
C10	https://www.youtube.com/watch?v=2CjzkHvH4iE		
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-
	NPTEL		Web
	https://nptel.ac.in/courses/105103096/		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B. 5.
Students must have learnt the following Courses / Topics with described Content

Mod ules	Course Code	Course Name	Topic / Description	Remarks	Blooms Level	
1	18 CV 33	FLUID MECHANICS	Basic properties of fluids, BERNOULIS EQUATION	3	-	L3

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry \& profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.
Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

| Mod
 ules | Topic / Description | Area | Remarks
 Llooms
 Level |
| :---: | :--- | :---: | :---: | :---: |
| 1 | Byuoncy | Higher
 Study | Understa
 nd L2 |
| 2 | Open channel uniform flow | Higher
 Study | Understa
 nd L2 |
| 3 | Open channel non-uniform flow, GVF
 profiles | Higher
 Study | Understa
 nd L2 |
| 4 | Turbines | Higher
 Study | Understa
 nd L2 |
| 5 | Pumps | Higher
 Study | Understa
 nd L2 |
| - | | | |

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod ules	Course Code.\#	Course Outcome At the end of the course, student should be able to ...	Teach. Hours	Concept	Instr Method	Assessme nt Method	Blooms' Level
1	17 CV43.1	Apply principles of dimensional analysis and Buoyancy to design experiments	10	Dimentiona LAnalysis,	Lecture	C.I.A	L4 Analyzing
2	17 CV43.2	Design open channels for most economical sections.	15	Flow in open Channels, Specific Energy	Lecture	C.I.A	L4 Analyzing
3	17 CV43.3	Determine GVF profiles under nonuniform flow	05	Water Profiles	Lecture	C.I.A	L4 Analyzing
4	17 CV43.4Design the working proportions hydraulic machines	20	Velocity Triangles,	Lecture	C.I.A	L4 Turbines, pumps	
-	Analyzing						

2. Course Applications

Write 1 or 2 applications per CO.
Students should be able to employ / apply the course learnings to . .

Mod ules	Application Area Compiled from Module Applications.	CO	Level
1	Use of dimensions and the dimensional formula of physical quantities to find interrelations between them.	CO 1	L 3
2	Concept of Byuoncy is used for experimental determination of density.	CO 1	L 3
3	Uniform flow in channels.	CO 2	L 4
4	Non uniform flow in channels, rivers.	CO 2	L 4
5	Study of water profiles during non uniform flow.	CO 3	L 3
6	Design of Turbines.	CO 4	L 4
7	Design of Pumps.	CO 4	L 4

3. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes	Program Outcomes															-
Mod ules	CO.\#	At the end of the course student should be able to ..					$\begin{array}{\|c\|} \hline \mathrm{PO} \\ 5 \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{PO} \\ 6 \\ \hline \end{array}$	$\begin{gathered} \mathrm{PO} \\ 7 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 8 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 9 \end{gathered}$	$\begin{aligned} & \mathrm{PO} \\ & 10 \end{aligned}$	$\begin{gathered} \mathrm{PO} \\ 11 \end{gathered}$	$\begin{aligned} & \mathrm{PO} \\ & 12 \end{aligned}$	PS	$\begin{array}{\|l\|} \mathrm{PS} \\ \mathrm{O} 2 \end{array}$	$\begin{aligned} & \mathrm{PS} \\ & \mathrm{O}_{3} \end{aligned}$	$\begin{gathered} \mathrm{Lev} \\ \mathrm{el} \end{gathered}$
1	17CV43.1	Apply principles of dimensional analysis and Buoyancy to design experiments	3	3	2	2	-	-	-	-	-	-	-	-				L2
2	17CV43.2	Design open channels for most economical sections.	3	3	2	2	-	-	-	-	-	-	-	-				L3
3	17CV43.3	Determine GVF profiles under nonuniform flow	3	3	2	2	-	-	-	-	-	-	-	-				L2
4	17CV43.4	Design the working proportions hydraulic machines	3	3	2	2	-	-	-	-	-	-	-	-				L2
-	17CV43	Average attainment (1, 2, or 3)																-

- PO, PSO 1.Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions; 4. Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork; 10.Communication; 11.Project Management and Finance; 12.Life-long Learning; S1.Software Engineering; S2.Data Base Management; S3.Web Design

4. Curricular Gap and Content

Topics \& contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod ules	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1	-				

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod ules	Title	Teach. Hours	No. of question in Exam						CO	Levels
			CIA-1	CIA-2	CIA-3	Asg	Extra Asg	SEE		
1	Dimensional and Model Analysis	10	2	-	-	1	1	2	CO1, CO2	L4
2	Open Channel Flow Hydraulics	10	2	-	-	1	1	2	$\mathrm{CO}_{3}, \mathrm{CO}_{4}$	L4
3	Non-Uniform Flow	10	-	2	-	1	1	2	CO5, CO6	L4
4	Hydraulic Machines and Impulse Turbines	10	-	2	-	1	1	2	C07, C08	L4
5	Reaction Turbines and Pumps	10	-	-	4	1	1	2	COg, CO10	L4
-	Total	50	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A. 2.

$\begin{aligned} & \text { Mod } \\ & \text { ules } \end{aligned}$	Evaluation	Weightage in Marks	CO	Levels
1,2	CIA Exam - 1	30	CO1, CO2, CO3, CO4	L4
3, 4	CIA Exam - 2	30	CO5, CO6, CO7, C08	L4
5	CIA Exam - 3	30	CO9, CO10	L4
1,2	Assignment-1	05	CO1, CO2, CO3, CO_{4}	L4
3, 4	Assignment - 2	05	CO5, CO6, CO7, CO8	L4
5	Assignment - 3	05	COg, CO10	L4
1,2	Seminar - 1	05	CO1, CO2, CO3, CO4	L4
3, 4	Seminar - 2	05	CO5, CO6,C07,C08	L4
5	Seminar-3	05	CO9, CO10	L4
1, 2	Other Activities - define - Slip test		CO1 to Co10	L2, L3, L4 ...
	Final CIA Marks	40	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Applied Hydraulics	Appr Time:	16 Hrs
\mathbf{a}	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Apply principles of dimensional analysis and Buoyancy to design experiments	CO 1	L 4
\mathbf{b}	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
1	Dimensional Homogeneity	CO 1	L 3
2	Non Dimensional Parameter	CO 1	L 3
3	Rayleigh Methods And Buckingham Theorem	CO 1	L 3

COURSE PLAN - CAY 2019-20

4	Dimensional Analysis, Choice Of Variables, Examples On Various Applications	CO1	L3
5	Model Analysis, Similitude	CO1	L3
6	Types Of Similarities, Force Ratios, Similarity Laws, Model Classification	CO1	L3
7	Reynolds Model	CO1	L3
8	Froude's Model	CO1	L3
9	Euler's Model	CO1	L3
10	Webber's Model	CO1	L3
11	Mach Model	CO1	L3
12	Scale Effects	CO1	L3
13	Distorted Models	CO1	L3
14	Numerical Problems On Reynold's, And Froude's Model	CO1	L3
15	Buoyancy, Force And Centre Of Buoyancy	CO1	L3
16	Metacentre And Metacentric Height	CO1	L3
17	Stability Of Submerged And Floating Bodies	CO1	L3
18	Determination Of Metacentric Height, Experimental And Theoretical Method	CO1	L3
19	Numerical Problems	CO1	L4
c	Application Areas	CO	Level
1	Use of dimensions and the dimensional formula of physical quantities to find interrelations between them.	CO1	L4
2	Concept of Byuoncy is used for experimental determination of density.	CO1	L4
d	Review Questions	-	-
1	Describe the geometric similarity, kinematic similarity and dynamic similarity.	CO1	-
2	Briefly explain geometric, kinematic and dynamic similarities.	CO1	-
3	Explain the terms: distorted models and undistorted models.	CO1	-
4	a. Define the terms i) Model ii) Prototype iii) Model Analysis iv) Hydraulic similitude.	CO1	-
5	State and explain Buckingham Pi - theorem citing an example. Also explain its advantages over Rayleigh's method of dimensional analysis.	CO1	-
6	Explain Froude's model law. List its application in fluid flow problems.	CO1	-
7	Distinguish between : i) Geometric and Kinematic similarity ii) Reynolds's and E.B Froude's number iii) Distorted and undistorted model.	CO1	-
8	Explain the Rayleigh's method of dimensional analysis, with an example.	CO1	-
9	Define the dimensional homogeneity. Give an example.	CO1	-
10	Derive different scale ratio's as per Reynold's model law.	CO1	-
11	Water is flowing through a pipe of diameter 40 cm at a velocity of $4 \mathrm{~m} / \mathrm{s}$. Find the velocity of oil flowing in another pipe of diameter 10 cm , if the condition of dynamic similarity is satisfied between the two pipes. The viscosity of water and oil are given as 0.01 Poise and 0.025 Poise. The specific gravity of oil = 0.8.	CO1	-
12	Using Buckingham's pi theorem, obtain an expression for pressure difference $A P$ in a pipe of diameter D and height t due to turbulent flow which depends on the velocity V, viscosity $M u$, density p and roughness k.	CO1	-
13	A pipe of diameter 1.8 m is required to transport an oil of sp.gr 0.8 and viscosity 0.04 poise at the rate of $4 \mathrm{~m} / \mathrm{s}$. Tests were conducted on a 20 cm diameter pipe using water at $20^{\circ} \mathrm{C}$. Find velocity and rate of flow in model. Viscosity of water at $20^{\circ} \mathrm{C}$ is 0.01 poise.	CO1	-
14	A 7.2 m high and 15 m long spillway discharges $94 \mathrm{~m} 3 / \mathrm{sec}$ of water under a head of 2 m . If a $1: 9$ scale model of this spillway is to be constructed, determine model dimensions, head over the spillway model and model discharge. If model experiences a force of 7500 N , determine force on the	CO1	-

	prototype.		
15	A flow meter tested in the laboratory, gave-a pressure drop of $200 \mathrm{kN} / \mathrm{m}$ for a discharge of $0.2 \mathrm{~m} / \mathrm{s}$ in 200 mm diameter pipe. If a geometrically similar model is tested in 1000mm diameter pipe at identical conditions of fluid, determine the corresponding discharge and pressure drop in the model.	-	
16	A 2.5 m ship model was tested in fresh water $\mathrm{p}=1000 \mathrm{~kg} / \mathrm{m}^{3}$ and measurements indicated that there was resistance of 45 N when the model was moved at $2 \mathrm{~m} / \mathrm{s}$. Workout the velocity of 40 m prototype. Also calculate the force required to drive the prototype at this speed through sea water $\left(p=1025 \mathrm{~kg} / \mathrm{m}^{3}\right)$.	-	
\mathbf{e}	Experiences	-	-

Module - 2

Title:	Applied Hydraulics	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Design open channels for most economical sections	CO 2	14
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
20	Classification of flow through channels	CO 2	-
21	Chezy's and Manning's equation for flow through open channel	CO 2	-
22	Most economical channel sections	CO 2	-
23	Uniform flow through Open channels	CO 2	-
24	Numerical Problems	CO 2	-
25	Specific Energy and Specific energy curves	CO 2	-
26	Critical flow and corresponding critical parameters	CO 2	-
27	Metering flumes	CO 2	-
28	Numerical Problems	CO 2	-
c	Application Areas	CO	Level
1	Uniform flow in channels.	CO 2	L4
d	Review Questions	-	-
17	Bring out the difference between flow through pipes and flow through open channel.	CO 2	-
18	Prove that for a trapezoidal channel of most economical section : i) Half of top width - length of one ofsloping sides ii) hydraulic mean depth $=E / 2$ depth of flow	CO 2	-
19	What do you understand best hydraulic channel section? Derive the conditions for best hydraulic triangular channel section.	CO 2	-
20	With neat sketches differentiate between flow through pipes and flow through open channels Time: 3 hrs. Max. Marks:100 Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part 2. Missing data may suitably be assumed. with examples.	CO 2	-
21	Derive an expression for the discharge through an open channel using Manning's formula.	CO 2	-
22	Differentiate between : i) Hydraulic depth and hydraulic mean depth ii) Steady and uniform flow iii) Alternate depth and conjugate depth iv) Open channel flow and pipe flow.	CO 2	-
23	Show that the sloping side of a most economical trapezoidal section	CO 2	-

	makes an angle 60 with horizontal.		
24	Derive the conditions for the most economical trapezoidal channel section.	CO2	-
25	Derive the Chezy's equation for uniform flow in open channel with usual notations.	CO2	-
26	Distinguish between: Pipe flow and open channel flow.	CO 2	-
27	Define specific energy. Draw specific energy curve, and then derive expressions for critical depth and critical velocity.	CO2	-
28	Determine the maximum discharge of water through a circular channel of diameter 2 m when the bed slope of the channel is 1 in 1500 . Take $\mathrm{C}=60$.	CO 2	-
29	A trapezoidal channel has side slopes of 1 horizontal to 2 vertical and the slope of the bed is 1 in 1500 . The area of section is 40 m Find the dimensions of the section and the discharge if it is most economical.	CO 2	
30	Derive an expression for critical depth and critical velocity in case of nonuniform flow through rectangular channel.	CO2	-
31	An earthen channel with a base width 2 m and side slope 1 H to 2 V carries water with a depth of 1 m . The bed slope is 1 in 625 . Calculate the discharge if $\mathrm{n}=0.03$. Also calculate average shear stress at the channel boundary.	CO2	-
32	Derive the conditions for most economical trapezoidal section. Also show that the most economical trapezoidal section for an open channel is one which has three sides tangential to the semicircle described on the water line.	CO2	-
33	canal is to have a trapezoidal section with one side vertical and the other sloping at 60° to the horizontaL It has to carry water at $30 \mathrm{~m} 3 / \mathrm{s}$ with mean velocity $2 \mathrm{~m} / \mathrm{s}$. Compute the dimensions of the section which will require minimum lining.	CO2	-
34	trapezoidal channel with side slopes of 3 horizontal to 2 vertical has to be designed to convey $10 \mathrm{~m} 3 / \mathrm{s}$ at a velocity of $1.5 \mathrm{~m} / \mathrm{s}$, so that the amount of concrete lining for the bed and sides is minimum. Find: i) The wetted perimeter; ii) Slope of the bed if Manning's $n=0.014$.	CO 2	-
35	Define specific energy. Explain specific energy curve (sketch).	CO 2	
36	Define specific energy. Draw specific energy curve, and then derive expressions for critical depth, critical velocity and minimum specific energy.	CO 2	-
37	The discharge of water through a rectangular channel of width 10 m , is 20 m when depth of flow of water is 2 m . Calculate i) Specific energy of flowing water. ii) Critical depth and critical velocity. iii) Minimum specific energy.	CO 2	
38	Sluice gate discharges water into a horizontal rectangular channel with a velocity of $6 \mathrm{~m} / \mathrm{s}$ and depth of flow is 0.4 m . The width of the channel is 8 m . Determine whether a hydraulic jump will occur, and if so, find tits height and loss of energy per kg of water. Also determine the power lost in the hydraulic jump.	CO 2	-
39	Water is flowing through the circular open channel at the rate of $400 \mathrm{~L} / \mathrm{s}$ when the channel is having a bed slope of 1 in 9000 . Find the diameter of the channel if the depth of flow is 1.25 times radius of channel and Manning's $N=0.015$	CO2	-
40	A rectangular channel carries water at the rate of 400 litres/sec when bed slope is 1 in 2000. Find the most economical dimensions of the channel if $C=50$.	CO 2	-
41	An open channel is to be constructed of trapezoidal section and with side slopes 1 vertical to 1.5 Horizontal. Find relation between bottom width and depth of flow for minimum excavation. If flow is to be 2.7 cumec, calculate the bottom width and depth of flow assuming C in Chezy's formula as 44.5 and bed slope is 1 in 4000 .	CO 2	-
42	A discharge of $18 \mathrm{m3} / \mathrm{s}$ flows through a rectangular channel 6 m wide at a	CO 2	

	depth of 1.6m. Find: i) Specific energy head ii) Critical depth iii) State weather the flow is subcritical or supercritical iv) What is the depth alternate to the given above?		
\mathbf{e}	Experiences	-	-
$\mathbf{1}$			

E1. CIA EXAM - 1

a. Model Question Paper - 1

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions						
Crs Code:	18CV43 Sem:	IV	Marks:	$5 / 10$	Time:	
Course:	Applied Hydraulics					
Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.						

SNo	Assignment Description	Marks	CO
1	Describe the geometric similarity, kinematic similarity and dynamic similarity.	10	CO1
2	Briefly explain geometric, kinematic and dynamic similarities.	10	CO1
3	Explain the terms: distorted models and undistorted models.	10	$\mathrm{CO1}$
4	a. Define the terms i) Model	10	CO 1

	li) Prototype iii) Model Analysis iv) Hydraulic similitude.		
5	State and explain Buckingham Pi - theorem citing an example. Also explain its advantages over Rayleigh's method of dimensional analysis.	10	CO1
6	Explain Froude's model law. List its application in fluid flow problems.	10	CO 1
7	Distinguish between : i) Geometric and Kinematic similarity ii) Reynolds's and E.B Froude's number iii) Distorted and undistorted model.	10	CO 1
8	Explain the Rayleigh's method of dimensional analysis, with an example.	10	CO1
9	Define the dimensional homogeneity. Give an example.	10	CO1
10	Derive different scale ratio's as per Reynold's model law.	10	CO1
11	Water is flowing through a pipe of diameter 40 cm at a velocity of $4 \mathrm{~m} / \mathrm{s}$. Find the velocity of oil flowing in another pipe of diameter 10 cm , if the condition of dynamic similarity is satisfied between the two pipes. The viscosity of water and oil are given as 0.01 Poise and 0.025 Poise. The specific gravity of oil $=0.8$.	10	CO 1
12	Using Buckingham's pi theorem, obtain an expression for pressure difference AP in a pipe of diameter D and height t due to turbulent flow which depends on the velocity V , viscosity Mu , density p and roughness k .	10	CO1
13	A pipe of diameter 1.8 m is required to transport an oil of sp.gr 0.8 and viscosity 0.04 poise at the rate of $4 \mathrm{~m} / \mathrm{s}$. Tests were conducted on a 20 cm diameter pipe using water at $20^{\circ} \mathrm{C}$. Find velocity and rate of flow in model. Viscosity of water at $20^{\circ} \mathrm{C}$ is 0.01 poise.	10	CO1
14	A 7.2 m high and 15 m long spillway discharges $94 \mathrm{~m} 3 / \mathrm{sec}$ of water under a head of 2 m . If a $1: 9$ scale model of this spillway is to be constructed, determine model dimensions, head over the spillway model and model discharge. If model experiences a force of 7500 N , determine force on the prototype.	10	CO1
15	A flow meter tested in the laboratory, gave-a pressure drop of $200 \mathrm{kN} / \mathrm{m}$ for a discharge of $0.2 \mathrm{~m} / \mathrm{s}$ in 200 mm diameter pipe. If a geometrically similar model is tested in 1000 mm diameter pipe at identical conditions of fluid, determine the corresponding discharge and pressure drop in the model.	10	CO1
16	A 2.5 m ship model was tested in fresh water $p=1000 \mathrm{~kg} / \mathrm{m}^{3}$ and measurements indicated that there was resistance of 45 N when the model was moved at $2 \mathrm{~m} / \mathrm{s}$. Workout the velocity of 40 m prototype. Also calculate the force required to drive the prototype at this speed through sea water (p $=1025 \mathrm{~kg} / \mathrm{m}^{3}$).	10	CO1
17	Bring out the difference between flow through pipes and flow through open channel.	10	CO 2
18	Prove that for a trapezoidal channel of most economical section i) Half of top width - length of one ofsloping sides ii) hydraulic mean depth $=E / 2$ depth of flow	10	CO 2
19	What do you understand best hydraulic channel section? Derive the conditions for best hydraulic triangular channel section.	10	CO 2
20	With neat sketches differentiate between flow through pipes and flow through open channels	10	CO 2
21	Derive an expression for the discharge through an open channel using Manning's formula.	10	CO 2
22	Differentiate between : i) Hydraulic depth and hydraulic mean depth ii) Steady and uniform flow iii) Alternate depth and conjugate depth iv) Open channel flow and pipe flow.	10	CO 2
23	Show that the sloping side of a most economical trapezoidal section makes an angle 60 with horizontal.	10	CO 2
24	Derive the conditions for the most economical trapezoidal channel section.	10	CO 2
25	Derive the Chezy's equation for uniform flow in open channel with usual notations.	10	CO 2

26	Distinguish between: Pipe flow and open channel flow.	10	CO 2
27	Define specific energy. Draw specific energy curve, and then derive expressions for critical depth and critical velocity.	10	CO 2
28	Determine the maximum discharge of water through a circular channel of diameter 2 m when the bed slope of the channel is 1 in 1500 . Take $\mathrm{C}=60$.	10	CO 2
29	A trapezoidal channel has side slopes of 1 horizontal to 2 vertical and the slope of the bed is 1 in 1500 . The area of section is 40 m Find the dimensions of the section and the discharge if it is most economical.	10	CO 2
30	Derive an expression for critical depth and critical velocity in case of nonuniform flow through rectangular channel.	10	CO 2
31	An earthen channel with a base width 2 m and side slope 1 H to 2 V carries water with a depth of 1 m . The bed slope is 1 in 625 . Calculate the discharge if $n=0.03$. Also calculate average shear stress at the channel boundary.	10	CO 2
32	Derive the conditions for most economical trapezoidal section. Also show that the most economical trapezoidal section for an open channel is one which has three sides tangential to the semicircle described on the water line.	10	CO 2
33	canal is to have a trapezoidal section with one side vertical and the other sloping at 60° to the horizontaL It has to carry water at $30 \mathrm{~m} 3 / \mathrm{s}$ with mean velocity $2 \mathrm{~m} / \mathrm{s}$. Compute the dimensions of the section which will require minimum lining.	10	CO 2
34	trapezoidal channel with side slopes of 3 horizontal to 2 vertical has to be designed to convey $10 \mathrm{~m} 3 / \mathrm{s}$ at a velocity of $1.5 \mathrm{~m} / \mathrm{s}$, so that the amount of concrete lining for the bed and sides is minimum. Find: i) The wetted perimeter; ii) Slope of the bed if Manning's $n=0.014$.	10	CO 2
35	Define specific energy. Explain specific energy curve (sketch).	10	CO 2
36	Define specific energy. Draw specific energy curve, and then derive expressions for critical depth, critical velocity and minimum specific energy.	10	CO 2
37	The discharge of water through a rectangular channel of width 10 m , is 20 m when depth of flow of water is 2 m . Calculate i) Specific energy of flowing water. ii) Critical depth and critical velocity. iii) Minimum specific energy.	10	CO 2
38	Sluice gate discharges water into a horizontal rectangular channel with a velocity of $6 \mathrm{~m} / \mathrm{s}$ and depth of flow is 0.4 m . The width of the channel is 8 m . Determine whether a hydraulic jump will occur, and if so, find tits height and loss of energy per kg of water. Also determine the power lost in the hydraulic jump.	10	CO 2

D2. TEACHING PLAN - 2

Module - 3

Title:	Applied Hydraulics	Appr Time:	16 Hrs
\mathbf{a}	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Design open channels for most economical sections.	CO 2	L 4
2	Determine GVF profiles under nonuniform flow	CO 3	L 3
\mathbf{b}	Course Schedule	CO	Level
Class No	Module Content Covered	CO 2	-
1	Hydraulic Jump	CO 2	-
2	Expressions for conjugate depths and Energy loss	CO 2	-
3	Numerical Problems	CO 2	-
4	Gradually varied flow, Equation		

COURSE PLAN - CAY 2019-20

5	Back water curve and afflux	CO 2	-
6	Description of water curves or profiles	CO_{3}	-
7	Mild slope profiles	CO_{3}	-
8	steep slope profiles	CO_{3}	-
9	critical slope profiles	CO_{3}	-
10	horizontal and adverse slope profiles	CO_{3}	-
11	Numerical problems	CO_{3}	-
12	Control sections	CO_{3}	-
c	Application Areas	CO	Level
1	Non uniform flow in channels, rivers.	CO 2	L4
2	Study of water profiles during non uniform flow.	CO 3	L3
d	Review Questions	-	-
1	Define the term hydraulic jump. Derive an expression for depth of hydraulic jump in terms of upstream Froude's number.	CO 2	-
2	The rectangular channel of bed width 4 m is discharging water at the rate of 10 m . Determine the following : i) Critical depth ii) Minimum specific energy iii) What will be the type of flow in the depth is 0.6 m and 2 m .	CO 2	-
3	A sluice gate discharges water into a horizontal rectangular channel with a velocity of $5 \mathrm{~m} / \mathrm{sec}$ and depth of flow is 0.4 m . The width of the channel is 6 m . Determine whether a hydraulic jump will occur, and if so find its height and loss of energy per kg of water. Also determine the power lost in the hydraulic jump.	CO 2	-
4	horizontal rectangular channel 4 m wide carries a discharge of $16 \mathrm{~m} 3 / \mathrm{s}$. If the initial depth of flow is 0.5 m , determine is there a possibility of formation of hydraulic jump? If the jump forms, determine the sequent depth, Froude number after jump and energy loss.	CO 2	-
5	horizontal rectangular channel 4 m wide carries a discharge of $16 \mathrm{~m} 3 / \mathrm{s}$. Determine whether a jump may occur at an initial depth of 0.5 m or not. If a jump occurs, determine the sequent detpth to, this initial depth. Also determine the energy loss in the Jump.	CO 2	-
6	Derive an equation for gradually varied flow in open channels. Also state assumptions made in it.	CO 2	-
7	Explain classification of surface profiles in open channels with neat sketches.	CO 3	-
8	Give the classification of surface profiles in case of GVF.	CO_{3}	-
9	Derive the differential equation for gradually varied flow and list all the assumptions.	CO 2	-
10	The specific energy for 6 m wide rectangular channel is to be 5 kg m / kg. if the rate of flow of water through channel is $24 \mathrm{~m} / \mathrm{s}$, determine alternate depths of channel.	CO 2	-
	Experiences	-	-

Module-4

Title:	Applied Hydraulics	Appr Time:	16 Hrs
\mathbf{a}	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Design the working proportions of hydraulic machines	CO 4	L 4
\mathbf{b}	Course Schedule	$\mathbf{C O}$	Level
Class $\mathbf{N o}$ Module Content Covered	CO 4	-	
1	Impulse-Momentum equation.	CO 4	-
2	Direct impact of a jet on a stationary and moving curved vanes,	CO 4	-
3	Introduction to concept of velocity triangles,	CO 4	-
4	Impact of jet on a series of curved vanes		

5	Problems on Turbines	CO 4	-
6	Impulse Turbines: Introduction to turbines,	CO_{4}	-
7	General lay out of a hydroelectric plant,	CO 4	-
8	Heads and Efficiencies,	CO 4	-
9	Classification of turbines.	CO 4	-
10	Pelton wheel components,	CO_{4}	-
11	Working principle and velocity triangles.	CO_{4}	-
12	Maximum power, efficiency, working proportions	CO 4	-
13	Numerical problems	CO 4	-
c	Application Areas	CO	Level
1	Design of Turbines.	CO 4	L4
d	Review Questions		-
11	Jet of water strikes an unsymmetrical moving curves plate tangentially at one of the tips. Derive an expression for the force exerted by the jet in the horizontal direction of motion. Also describe the velocity triangles and obtain an expression for work done and efficiency.	CO 4	-
12	Show that maximum efficiency of the jet striking a series of curved vanes moving in the direction at an angle teta with velocity u	CO 4	-
13	Derive an expression for the force exerted by a jet of water on a moving semi-circular plate in the direction of the jet when the jet strikes at the centre of semicircular plate.	CO 4	-
14	Derive an equation of force exerted by a jet on an unsymmetrical curved vane tangentially,when vane K moving in the x-direction. Draw the velocity triangles and explain. Also find the workdone and efficiency.	CO 4	-
15	A jet of water moving at $15 \mathrm{~m} / \mathrm{s}$ impinges on symmetrical curved vane tangentially to deflect the jet through 120 , find the angle of the jet so that there is no shock at inlet. What is the absolute velocity of the jet at exit in magnitude and direction and the work done per second per unit weight of water striking per second? Assume that the vane is smooth.	CO 4	-
16	A jet of water with velocity $40 \mathrm{~m} / \mathrm{s}$ strikes a curved vane, which is moving with velocity $20 \mathrm{~m} / \mathrm{s}$. The jet makes an angle of 30° with the direction of motion of vane at inlet and leaves at an angle of 90° to the direction of motion of vane at outlet. Draw the velocity triangles at inlet and outlet and determine the vane angles at inlet and outlet so that the water enters and leaves the vane without shock.	CO 4	-
17	A jet of water moving at 20rMs impinges on a symmetrical curved vane so shaped to deflect the jet through 120°. If the vane is moving at $5 \mathrm{~m} / \mathrm{s}$. find the angle of the jet so that there is no shock at inlet. Also determine the absolute velocity of jet at exit in magnitude and direction and the work done.	CO 4	-
18	stationary vane having an inlet angle of zero degree and an outlet angle 25° received water at a velocity of $50 \mathrm{~m} / \mathrm{s}$. Determine the components of force acting on it in the direction of jet and normal to it. Also find the resultant force. If the vane is moving with a velocity $20 \mathrm{~m} / \mathrm{s}$ in the direction of jet, calculate the resultant force, work done and power developed.	CO 4	-
19	A jet of water with a velocity of $40 \mathrm{~m} / \mathrm{sec}$ strikes a curved vane which moves with a velocity of $20 \mathrm{~m} / \mathrm{s}$. The jet makes an angle of 30° with the direction of motion of the vane at the inlet and leaves at 90° to the direction of motion of the vane at the outlet. Determine vane angles at the inlet and outlet if water enters and leaves without shock. Also determine efficiency.	CO 4	-
20	jet of water, 60mm in diameter, strikes a curved vane at its centre with a velocity of $18 \mathrm{~m} / \mathrm{s}$. The curved vane is moving with a velocity of $6 \mathrm{~m} / \mathrm{s}$ in the direction of the jet. The jet is deflected through an angle of 165°. Assuming the plate to be smooth, Find: i) Thrust on the plate in the direction of jet ii) Power of the jet, and iii) Efficiency of the jet	CO 4	-
21	Draw a neat sketch of an hydroelectric power plant. Mention the functions of each component.	CO 4	-

E2. CIA EXAM - 2

a. Model Question Paper - 2

Crs Code:	: 18 CV 43	Sem:	IV	Marks:	40	Time:	75 minutes		
Course: Applied Hydraulics	Applied Hydraulics								
- -	Note: Answer any 2 questions, each carry equal marks.						Marks	CO	Leve

1	a	Define the term hydraulic jump. Derive an expression for depth of hydraulic jump in terms of upstream Froude's number.	10	CO 2	L2
	b	The rectangular channel of bed width 4 m is discharging water at the rate of 10 m . Determine the following : i) Critical depth ii) Minimum specific energy iii) What will be the type of flow in the depth is 0.6 m and 2 m .	10	CO 2	L2
2	a	Give the classification of surface profiles in case of GVF.	10	CO_{3}	L3
	b	The specific energy for 6 m wide rectangular channel is to be $5 \mathrm{~kg}-$ m / kg. if the rate of flow of water through channel is $24 \mathrm{~m} / \mathrm{s}$, determine alternate depths of channel. Derive the differential equation for gradually varied flow and list all the assumptions.	10	CO 2	L3
3	a	Derive an equation of force exerted by a jet on an unsymmetrical curved vane tangentially,when vane K moving in the x-direction. Draw the velocity triangles and explain. Also find the workdone and efficiency.	10	CO 4	L4
	b	A jet of water moving at $15 \mathrm{~m} / \mathrm{s}$ impinges on symmetrical curved vane tangentially to deflect the jet through 120,find the angle of the jet so that there is no shock at inlet. What is the absolute velocity of the jet at exit in magnitude and direction and the work done per second per unit weight of water striking per second? Assume that the vane is smooth.	10	CO 4	L3
4	a	Derive an expression for the work done per second by water on the runner of a Pelton wheel. Hence derive an expression of maximum efficiency of Pelton wheel giving the relationship between the jet speed and bucket speed.	10	CO 4	L4
	b	A Pelton wheel is receiving water from a penstock with a gross head of 510 m . One third of gross head is lost in friction in the penstock. The rate of flow through the nozzle fitted at the end of the penstock is $2.2 \mathrm{~m} 3 / \mathrm{s}$. the angle of deflection of the jet is 165°. Determine : i) Power given by water to the runner, ii) Hydraulic efficiency of the pelton wheel. Take Cv=1.0 and speed ratio $=0.45$.	10	CO 4	L3

b. Assignment - 2

Note: A distinct assignment to be assigned to each student.

	Determine whether a jump may occur at an initial depth of 0.5 m or not. If a jump occurs, determine the sequent detpth to, this initial depth. Also determine the energy loss in the Jump.			
6	Derive an equation for gradually varied flow in open channels. Also state assumptions made in it.	10	CO 4	-
7	Explain classification of surface profiles in open channels with neat sketches.	10	CO 4	-
8	Give the classification of surface profiles in case of GVF.	10	CO_{3}	-
9	Derive the differential equation for gradually varied flow and list all the assumptions.	10	CO_{3}	-
10	The specific energy for 6 m wide rectangular channel is to be $5 \mathrm{~kg}-\mathrm{m} / \mathrm{kg}$. if the rate of flow of water through channel is $24 \mathrm{~m} / \mathrm{s}$, determine alternate depths of channel.	10	CO 4	-
11	Jet of water strikes an unsymmetrical moving curves plate tangentially at one of the tips. Derive an expression for the force exerted by the jet in the horizontal direction of motion. Also describe the velocity triangles and obtain an expression for work done and efficiency.	10	CO 4	-
12	Show that maximum efficiency of the jet striking a series of curved vanes moving in the direction at an angle teta with velocity u	10	CO 4	-
13	Derive an expression for the force exerted by a jet of water on a moving semi-circular plate in the direction of the jet when the jet strikes at the centre of semicircular plate.	10	CO 4	-
14	Derive an equation of force exerted by a jet on an unsymmetrical curved vane tangentially, when vane K moving in the x -direction. Draw the velocity triangles and explain. Also find the workdone and efficiency.	10	CO 4	-
15	A jet of water moving at $15 \mathrm{~m} / \mathrm{s}$ impinges on symmetrical curved vane tangentially to deflect the jet through 120,find the angle of the jet so that there is no shock at inlet. What is the absolute velocity of the jet at exit in magnitude and direction and the work done per second per unit weight of water striking per second? Assume that the vane is smooth.	10	CO 4	-
16	A jet of water with velocity $40 \mathrm{~m} / \mathrm{s}$ strikes a curved vane, which is moving with velocity $20 \mathrm{~m} / \mathrm{s}$. The jet makes an angle of 30° with the direction of motion of vane at inlet and leaves at an angle of 90° to the direction of motion of vane at outlet. Draw the velocity triangles at inlet and outlet and determine the vane angles at inlet and outlet so that the water enters and leaves the vane without shock.	10	CO 4	-
17	A jet of water moving at 20rMs impinges on a symmetrical curved vane so shaped to deflect the jet through 120°. If the vane is moving at $5 \mathrm{~m} / \mathrm{s}$. find the angle of the jet so that there is no shock at inlet. Also determine the absolute velocity of jet at exit in magnitude and direction and the work done.	10	CO 4	-
18	stationary vane having an inlet angle of zero degree and an outlet angle 25° received water at a velocity of $50 \mathrm{~m} / \mathrm{s}$. Determine the components of force acting on it in the direction of jet and normal to it. Also find the resultant force. If the vane is moving with a velocity $20 \mathrm{~m} / \mathrm{s}$ in the direction of jet, calculate the resultant force, work done and power developed.	10	CO 4	-
19	A jet of water with a velocity of $40 \mathrm{~m} / \mathrm{sec}$ strikes a curved vane which moves with a velocity of $20 \mathrm{~m} / \mathrm{s}$. The jet makes an angle of 30° with the direction of motion of the vane at the inlet and leaves at 90° to the direction of motion of the vane at the outlet. Determine vane angles at the inlet and outlet if water enters and leaves without shock. Also determine efficiency.	10	CO 4	-
20	jet of water, 60 mm in diameter, strikes a curved vane at its centre with a velocity of $18 \mathrm{~m} / \mathrm{s}$. The curved vane is moving with a velocity of $6 \mathrm{~m} / \mathrm{s}$ in the direction of the jet. The jet is deflected through an angle of 165°. Assuming the plate to be smooth, Find: i) Thrust on the plate in the direction of jet ii) Power of the jet, and iii) Efficiency of the jet	10	CO 4	-
21	Draw a neat sketch of an hydroelectric power plant. Mention the functions of each component.	10	CO 4	-

22	How will you classify the turbines?	10	CO4	-
23	Give the classification of turbine with examples.	10	CO_{4}	-
24	Explain the concept of velocity triangles. Also obtain an expression for work done per second by jet striking unsymmetrical moving vane tangentially at one end of the tips.	10	CO 4	-
25	Differentiate between : i) Impulse and Reaction turbine ii) Radial and Axial flow turbine iii) Kaplan and Propellor turbine.	10	CO 4	-
26	For a Pelton wheel, derive an expression for work done and hydraulic efficiency. Also determine the condition for maximum hydraulic efficiency.	10	CO 4	-
27	With the help of velocity triangles derive an expression for work done and maximum hydraulic efficiency of a pelton wheel.	10	CO 4	-
28	Derive an expression for the work done per second by water on the runner of a Pelton wheel. Hence derive an expression of maximum efficiency of Pelton wheel giving the relationship between the jet speed and bucket speed.	10	CO 4	-
29	The water available for a Pelton wheel is 4 cumecs and the total head from the reservoir to the nozzle is 250 m . The turbine has two runners with two jets per runner. All the four jets have the same diameters. The pipeline is 3000 m long. The efficiency of power transmission through the pipeline and the nozzle is 91% and efficiency of each runner is 90%. The velocity coefficient of each nozzle is 0.975 and coefficient of friction " $4 f^{\prime}$ ' for the pipe is 0.0045 . Determine i) the power developed by the turbine ii) the diameter of the jet and iii) the diameter of the pipeline.	10	CO 4	-
30	pelton wheel has to be designed for the following data : Power to be developed $=6000 \mathrm{~kW}$, Net head available $=300 \mathrm{~m}$, Speed $=550$ rpm, ratio of jet diameter to wheel diameter $=1 / 10$ and overall efficiency $=$ 85%. Find the number of jets, diameter of jet, diameter of wheel and quantity of water required. Assume $\mathrm{Cv}=0.98$ and speed ratio 0.46 .	10	CO 4	-
31	Design a Pelton wheel with the following data, shaft power $=735.75 \mathrm{kN} \mathrm{H}=$ 200m, $\mathrm{N}=800 \mathrm{rpm} \mathrm{no}=0.86 \mathrm{D} / \mathrm{d}=10 \mathrm{Cv}=0.98(\mathrm{I})=0.45$. Determine D, d and number of jets.	10	CO 4	-
32	A Pelton wheel has to be designed for following data : Power to be developed 6000 kW . Net head available - 300 m : Speed -550 r.p.m. Ratio of jet diameter to wheel diameter $=1 / 10$ and overall efficiency -85%. Find number of jets : diameter of jet diameter of wheel ; and the quantity of water required. Assume co-eff of velocity as 0.98 and speed ratio as 0.46 .	10	CO 4	-
33	Design a Pelton wheel turbine required to develop 1471.5 kW power under a head of 160 m at 420 rpm . The overall efficiency may be taken as 85%. Assume c, = 0.98, cu $=0.46$, jet ratio $=12$.	10	CO 4	-
34	A Pelton wheel is receiving water from a penstock with a gross head of 510m. One third of gross head is lost in friction in the penstock. The rate of flow through the nozzle fitted at the end of the penstock is $2.2 \mathrm{~m} 3 / \mathrm{s}$. the angle of deflection of the jet is 165°. Determine : i) Power given by water to the runner, ii) Hydraulic efficiency of the pelton wheel. Take CV $=1.0$ and speed ratio $=0.45$.	10	CO 4	-
35	Define the term hydraulic jump. Derive an expression for depth of hydraulic jump in terms of upstream Froude's number.	10	CO 4	-
36	The rectangular channel of bed width 4 m is discharging water at the rate of 10m. Determine the following : i) Critical depth ii) Minimum specific energy iii) What will be the type of flow in the depth is 0.6 m and 2 m .	10	CO 4	-
37	A sluice gate discharges water into a horizontal rectangular channel with a velocity of $5 \mathrm{~m} / \mathrm{sec}$ and depth of flow is 0.4 m . The width of the channel is 6 m . Determine whether a hydraulic jump will occur, and if so find its height and loss of energy per kg of water. Also determine the power lost in the hydraulic jump.	10	CO 4	-

38	horizontal rectangular channel 4 m wide carries a discharge of $16 \mathrm{~m} 3 / \mathrm{s}$. If the initial depth of flow is 0.5m, determine is there a possibility of formation of hydraulic jump? If the jump forms, determine the sequent depth, Froude number after jump and energy loss.	10	$\mathrm{CO4}$	-
39	horizontal rectangular channel 4 m wide carries a discharge of $16 \mathrm{~m} 3 / \mathrm{s}$. Determine whether a jump may occur at an initial depth of 0.5m or not. If a jump occurs, determine the sequent detpth to, this initial depth. Also determine the energy loss in the Jump.	10	$\mathrm{CO4}$	-

D3. TEACHING PLAN - 3

Module - 5

Title:	Applied Hydraulics	Appr Time:	16 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Design the working proportions hydraulic machines	CO 4	L4
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Radial flow reaction turbines	CO 4	-
2	Francis turbine Descriptions, working proportions and design	CO 4	-
3	Numerical problems	CO 4	-
4	Kaplan turbine- Descriptions, working proportions and design	CO 4	-
5	Numerical problems	CO 4	-
6	Draft tube theory and unit quantities. (No problems)	CO 4	-
7	Components and Working of centrifugal pumps	CO 4	-
8	Types of centrifugal pumps	CO 4	-
9	Work done by the impeller	CO 4	-
10	Heads and Efficiencies	CO 4	-
11	Minimum starting speed of centrifugal pump	CO 4	-
c			
1			
2			
d			
1	Draw the neat sketch of Kaplan turbine and mention the parts.	CO 4	-
2	Define draft tube theory and obtain an expression for efficiency of a draft tube.	CO 4	-
3	What is a draft tube? With neat sketch, list the different types of draft tube.	CO 4	--
4	A Kaplan turbine develops 24647.6 kW power at an average head of 39 m . Assuming a speed ratio of 2 , flow ratio of 0.6 , diameter of boss equal to 0.35 times the diameter of the runner and an overall efficiency of 90%, calculate the diameter, speed and specific speed of the turbine.	CO 4	-
5	A Kaplan turbine working under a head of 20 m develops 12000 kW . The outer diameter of the runner is 3.5 m and inner diameter of the hub is 1.75 m . The guide blade angle at the extreme edge of the runner is 35° The hydraulic and overall efficiency is 88% and 84% respectively. If velocity of whirl is zero at outlet, determine the runner vane angle at outlet and inlet and also speed of the turbine.	CO4-	-
6	Kalpan turbine runner is to be designed to develop 10000 kW . The net head is 6.0 m . The speed ratio $=2.09$, flow ratio $=0.68$, overall efficiency is 80% and diameter of the loss is $1 / 3$ the diameter of the runner. Find the diameter of the runner, its speed and the specific speed of the turbine.	CO4-	-
7	A Kaplan turbine produces $60,000 \mathrm{~kW}$ under a net head of 25 m with an overall efficiency of 90%. Taking the value of speed ratio as 1.6, flow ratio as 0.5 and huh diameter as 0.35 times the outer diameter, find diameter and speed of turbine.	CO4-	-

8	$\begin{aligned} & \text { A Kaplan turbine runner js to be designed to develop brake power of } \\ & 7350 \mathrm{~kW} \text {, under a head of } 5.5 \mathrm{~m} \text {. Diameter of bass is } 1 / 3 \text { rd of diameter of } \\ & \text { runner. Assuming speed ratio }=2.09 \text {, flow ratio }=0.68 \text {, calculate: i) diameter } \\ & \text { of runner and boss; ii) speed of runner. Take Efficiency }=85 \% \text {. } \end{aligned}$	CO4-	
9	A Kaplan turbine develops 22000 kW at an average head of 35 m . Assuming a speed ratio of 2, flow ratio of 0.6 , diameter of the boss equal to 0.35 times the diameter of the runner and an overall efficiency of 88%, calculate the diameter, speed and specific speed of the turbine.	CO 4	
10	Describe the different heads of a centrifugal pump with necessary equations.	CO 4	
11	Explain briefly the various types of efficiencies of a centrifugal pump.	CO 4	
12	Derive an expression for the minimum starting speed for a centrifugal pump.	CO 4	
13	Distinguish between pumps in series and pumps in parallel.	CO 4	
14	Explain the following i) Suction head ii) Delivery head iii) Static head iv) Manometric head.	CO 4	
15	Define: i) Manometric efficiency ii) Mechanical efficiency iii) Overall efficiency.	CO 4	
16	Differentiate between : i) Pump and Turbine ii) Suction head and delivery head iii) Manometric and overall efficiency iv) Single stage and multistage pumps.	CO 4	
17	What is priming of centrifugal pump? How it is done?	CO 4	
18	The diameter of an impeller of a centrifugal pump at inlet and outlet at 30 cm and 60 cm respectively. The velocity of flow at outlet is $2.0 \mathrm{~m} / \mathrm{s}$ and the vanes are set back at an angle of 45° at the outlet. Determine the minimum starting speed of the pump if the	CO 4	
19	A three stage centrifugal pump has impellers 40 cm in diameter and 2 cm wide at outlet. The vanes are curved back at the outlet at 45° and reduce the circumferential area by 10%. The manometric efficiency is 90% and the overall efficiency is 80%. Determine the head generated by the pump when running at 1000 rpm delivering 50 litres per second. What should be the shaft horse power?	CO 4	
20	A centrifugal pump having outer diameter equal to two times the inner diameter and running at 1000 rpm works against a total head of 40 m . The velocity of flow through the impeller is constant and is equal to $2.5 \mathrm{~m} / \mathrm{s}$. The vanes are set back at an angle of 40° at outlet. If the outer diameter of the impeller is 500 mm and width at outlet is 50 mm , determine i) Vane angle at inlet ii) Work done by impeller on water per second iii) Manometric efficiency.	CO 4	
21	A centrifugal pump runs at 1000 rpm and delivers water against a head of 15 m . The impeller diameter and width at the outlet are 0.3 m and 0.05 m respectively. The vanes are curved back at an angle of 30° with the periphery at the outlet iman $=0.92$ find discharge.	CO 4	
22	A centrifugal pump having outer diameter equal to two times the inner diameter and running at 1000 r.p.m works against a total head of 40 m . The velocity of Bow through the impeller is constant and equal to $2.5 \mathrm{~m} / \mathrm{s}$. The vanes are set back at an angle of 40° at outlet. If the outer diameter of the impeller is 500 mm and width at outlet is 50 mm , determine: i) Vane angle at inlet ii) Work done by impeller on water iii) Manometric efficiency.	CO 4	
23	The internal and external 'diameters of the impeller of a centrifugal pump	CO 4	

	are respectively 200mm and 40mm. The' pump is running at 1200rpm. The vane angles of the impeller at inlet and outlet are 20° and 30° Water enters radially "36 velocity of flow is constant. Determine the workdone by the impeller per unit weight of Virate		
24	A centrifugal pump is to discharge 0.118m3/s at a speed of 1450rpm against a head of 25 m. The impeller diameter is 250 mm , its width at outlet is 50 mm and manometric efficiency is 75%. Determine the vane angle at the outer periphery of the impeller.	CO4	-
e	Experiences		-
		-	

E3. CIA EXAM - 3

a. Model Question Paper - 3

Crs Code:	18 CV 43	Sem:	IV	Marks:	40	Time:
Course:	Applied Hydraulics					

Course: Applied Hydraulics

-	-	Note: Answer any 2 questions, each carry equal marks.	Marks	CO	Level
1	a	What is a draft tube? With neat sketch, list the different types of draft tube.	10	CO 4	
	b	A Kaplan turbine develops 24647.6 kW power at an average head of 39 m . Assuming a speed ratio of 2 , flow ratio of 0.6 , diameter of boss equal to 0.35 times the diameter of the runner and an overall efficiency of 90%, calculate the diameter, speed and specific speed of the turbine.	10	CO 4	
2	a	Draw the neat sketch of Kaplan turbine and mention the parts.	10	CO 4	
	b	A Kaplan turbine runner js to be designed to develop brake power of 7350 kW , under a head of 5.5 m . Diameter of bass is $1 / 3$ rd of diameter of runner. Assuming speed ratio $=2.09$, flow ratio $=0.68$, calculate: i) diameter of runner and boss; ii) speed of runner. Take Efficiency $=85 \%$.	10	CO 4	
3	a	What is priming of centrifugal pump? How it is done?	10	CO 4	
	b	The diameter of an impeller of a centrifugal pump at inlet and outlet at 30 cm and 60 cm respectively. The velocity of flow at outlet is $2.0 \mathrm{~m} / \mathrm{s}$ and the vanes are set back at an angle of 45° at the outlet. Determine the minimum starting speed of the pump if the manometric efficiency is 70%.	10	CO 4	
4	a	Derive an expression for the minimum starting speed for a centrifugal pump.	10	CO 4	
	b	A centrifugal pump is to discharge $0.118 \mathrm{~m} 3 / \mathrm{s}$ at a speed of 1450 rpm against a head of 25 m . The impeller diameter is 250 mm , its width at outlet is 50 mm and manometric efficiency is 75%. Determine the vane angle at the outer periphery of the impeller.	10	CO 4	

b. Assignment - 3

Note: A distinct assignment to be assigned to each student.

	the diameter, speed and specific speed of the turbine.			
5	A Kaplan turbine working under a head of 20 m develops 12000 kW . The outer diameter of the runner is 3.5 m and inner diameter of the hub is 1.75 m . The guide blade angle at the extreme edge of the runner is 35° The hydraulic and overall efficiency is 88% and 84% respectively. If velocity of whirl is zero at outlet, determine the runner vane angle at outlet and inlet and also speed of the turbine.	10	CO4	-
6	Kalpan turbine runner is to be designed to develop 10000 kW . The net head is 6.0 m . The speed ratio $=2.09$, flow ratio $=0.68$, overall efficiency is 80% and diameter of the loss is $1 / 3$ the diameter of the runner. Find the diameter of the runner, its speed and the specific speed of the turbine.	10	CO 4	-
7	A Kaplan turbine produces $60,000 \mathrm{~kW}$ under a net head of 25 m with an overall efficiency of 90%. Taking the value of speed ratio as 1.6 , flow ratio as 0.5 and huh diameter as 0.35 times the outer diameter, find diameter and speed of turbine.	10	CO 4	-
8	A Kaplan turbine runner js to be designed to develop brake power of 7350 kW , under a head of 5.5 m . Diameter of bass is $1 / 3$ rd of diameter of runner. Assuming speed ratio $=2.09$, flow ratio $=0.68$, calculate: i) diameter of runner and boss; ii) speed of runner. Take Efficiency $=85 \%$.	10	CO 4	-
9	A Kaplan turbine develops 22000 kW at an average head of 35 m . Assuming a speed ratio of 2 , flow ratio of 0.6 , diameter of the boss equal to 0.35 times the diameter of the runner and an overall efficiency of 88%, calculate the diameter, speed and specific speed of the turbine.	10	CO 4	-
10	Describe the different heads of a centrifugal pump with necessary equations.	10	CO 4	-
11	Explain briefly the various types of efficiencies of a centrifugal pump.	10	CO 4	-
12	Derive an expression for the minimum starting speed for a centrifugal pump.	10	CO 4	-
13	Distinguish between pumps in series and pumps in parallel.	10	CO 4	-
14	Explain the following i) Suction head ii) Delivery head iii) Static head iv) Manometric head.	10	CO 4	-
15	Define: i) Manometric efficiency ii) Mechanical efficiency iii) Overall efficiency.	10	CO 4	-
16	Differentiate between : i) Pump and Turbine ii) Suction head and delivery head iii) Manometric and overall efficiency iv) Single stage and multistage pumps.	10	CO 4	-
17	What is priming of centrifugal pump? How it is done?	10	CO 4	-
18	The diameter of an impeller of a centrifugal pump at inlet and outlet at 30 cm and 60 cm respectively. The velocity of flow at outlet is $2.0 \mathrm{~m} / \mathrm{s}$ and the vanes are set back at an angle of 45° at the outlet. Determine the minimum starting speed of the pump if the manometric efficiency is 70%.	10	CO 4	-
19	A three stage centrifugal pump has impellers 40 cm in diameter and 2 cm wide at outlet. The vanes are curved back at the outlet at 45° and reduce the circumferential area by 10%. The manometric efficiency is 90% and the overall efficiency is 80%. Determine the head generated by the pump when running at 1000 rpm delivering 50 litres per second. What should be the shaft horse power?	10	CO 4	-
20	A centrifugal pump having outer diameter equal to two times the inner diameter and running at 1000 rpm works against a total head of 40 m . The velocity of flow through the impeller is constant and is equal to $2.5 \mathrm{~m} / \mathrm{s}$. The vanes are set back at an angle of 40° at outlet. If the outer diameter of the impeller is 500 mm and width at outlet is 50 mm , determine i) Vane angle at inlet ii) Work done by impeller on water per second iii) Manometric efficiency.	10	CO 4	-

21	A centrifugal pump runs at 1000 rpm and delivers water against a head of 15 m . The impeller diameter and width at the outlet are 0.3 m and 0.05 m respectively. The vanes are curved back at an angle of 30° with the periphery at the outlet iman $=0.92$ find discharge.	10	CO 4	-
22	A centrifugal pump having outer diameter equal to two times the inner diameter and running at 1000 r.p.m works against a total head of 40 m . The velocity of Bow through the impeller is constant and equal to $2.5 \mathrm{~m} / \mathrm{s}$. The vanes are set back at an angle of 40° at outlet. If the outer diameter of the impeller is 500 mm and width at outlet is 50 mm , determine: i) Vane angle at inlet ii) Work done by impeller on water iii) Manometric efficiency.	10	CO 4	-
23	The internal and external 'diameters of the impeller of a centrifugal pump are respectively 200 mm and 40 mm . The' pump is running at 1200 rpm . The vane angles of the impeller at inlet and outlet are 20° and 30°. Water enters radially " 36 velocity of flow is constant. Determine the workdone by the impeller per unit weight of Virate	10	CO 4	-
24	A centrifugal pump is to discharge $0.118 \mathrm{~m} 3 / \mathrm{s}$ at a speed of 1450 rpm against a head of 25 m . The impeller diameter is 250 mm , its width at outlet is 50 mm and manometric efficiency is 75%. Determine the vane angle at the outer periphery of the impeller.	10	CO 4	-

F. EXAM PREPARATION

1. University Model Question Paper

Course: Crs Code:		Fluid Mechanics					Month / Year Time:		May /2020	
		17CV43	Sem:	IV	Marks:	100			180 m	inutes
Mod ule	Note	Answer all FIVE full questions. All questions carry equal marks.						Marks	CO	Level
1	a	State and explain Buckingham Pi - theorem citing an example. Also explain its advantages over Rayleigh's method of dimensional analysis.						10	CO1	L3
	b	Water is flowing through a pipe of diameter 40 cm at a velocity of $4 \mathrm{~m} / \mathrm{s}$. Find the velocity of oil flowing in another pipe of diameter 10 cm , if the condition of dynamic similarity is satisfied between the two pipes. The viscosity of water and oil are given as 0.01 Poise and 0.025 Poise. The specific gravity of oil $=0.8$.						10	CO1	L3
		OR								
1	a	Explain the Rayleigh's method of dimensional analysis, with an example.						10	CO 1	L2
	b	A pipe of diameter 1.8 m is required to transport an oil of sp.gr 0.8 and viscosity 0.04 poise at the rate of $4 \mathrm{~m} / \mathrm{s}$. Tests were conducted on a 20 cm diameter pipe using water at $20^{\circ} \mathrm{C}$. Find velocity and rate of flow in model. Viscosity of water at $20^{\circ} \mathrm{C}$ is 0.01 poise.						10	CO1	L3
2	a	Derive an expression for the discharge through an open channel using Manning's formula.						10	CO 2	L3
	b	canal is to have a trapezoidal section with one side vertical and the other sloping at 60° to the horizontaL It has to carry water at $30 \mathrm{~m} 3 / \mathrm{s}$ with mean velocity $2 \mathrm{~m} / \mathrm{s}$. Compute the dimensions of the section which will require minimum lining.						10	CO_{2}	L4
		OR								
2	a	Define specific energy. Draw specific energy curve, and then derive expressions for critical depth, critical velocity and minimum specific energy.						10	CO 2	L3
	b	An open channel is to be constructed of trapezoidal section and with side slopes 1 vertical to 1.5 Horizontal. Find relation between bottom width and depth of flow for minimum excavation. If flow is to be 2.7 cumec, calculate the bottom width and depth of flow assuming C in Chezy's formula as 44.5 and bed slope is 1 in 4000.						10	CO 2	L4

3	a	Define the term hydraulic jump. Derive an expression for depth of hydraulic jump in terms of upstream Froude's number.	10	CO 2	L3
	b	The rectangular channel of bed width 4 m is discharging water at the rate of 10 m . Determine the following : i) Critical depth ii) Minimum specific energy iii) What will be the type of flow in the depth is 0.6 m and 2 m .	10	CO 2	L3
		OR			
3	a	Give the classification of surface profiles in case of GVF.	10	CO 2	L3
	b	The specific energy for 6 m wide rectangular channel is to be 5 kg m / kg. if the rate of flow of water through channel is $24 \mathrm{~m} / \mathrm{s}$, determine alternate depths of channel. Derive the differential equation for gradually varied flow and list all the assumptions.	10	CO 3	L3
4	a	Derive an equation of force exerted by a jet on an unsymmetrical curved vane tangentially,when vane K moving in the x-direction. Draw the velocity triangles and explain. Also find the workdone and efficiency.	10	CO 4	L4
	b	A jet of water moving at $15 \mathrm{~m} / \mathrm{s}$ impinges on symmetrical curved vane tangentially to deflect the jet through 120 ,find the angle of the jet so that there is no shock at inlet. What is the absolute velocity of the jet at exit in magnitude and direction and the work done per second per unit weight of water striking per second? Assume that the vane is smooth.	10	CO 4	L4
		OR			
4	a	Derive an expression for the work done per second by water on the runner of a Pelton wheel. Hence derive an expression of maximum efficiency of Pelton wheel giving the relationship between the jet speed and bucket speed.	10	CO 4	L4
	b	A Pelton wheel is receiving water from a penstock with a gross head of 510 m . One third of gross head is lost in friction in the penstock. The rate of flow through the nozzle fitted at the end of the penstock is $2.2 \mathrm{~m} 3 / \mathrm{s}$. the angle of deflection of the jet is 165°. Determine : i) Power given by water to the runner, ii) Hydraulic efficiency of the pelton wheel. Take Cv=1.0 and speed ratio $=0.45$.	10	CO 4	L4
5	a	What is a draft tube? With neat sketch, list the different types of draft tube.	10	CO 4	L2
	b	A Kaplan turbine develops 24647.6 kW power at an average head of 39 m . Assuming a speed ratio of 2, flow ratio of 0.6, diameter of boss equal to 0.35 times the diameter of the runner and an overall efficiency of 90%, calculate the diameter, speed and specific speed of the turbine.	10	CO 4	L3
		OR			
5	a	What is priming of centrifugal pump? How it is done?	10	CO 4	L2
	b	The diameter of an impeller of a centrifugal pump at inlet and outlet at 30 cm and 60 cm respectively. The velocity of flow at outlet is $2.0 \mathrm{~m} / \mathrm{s}$ and the vanes are set back at an angle of 45° at the outlet. Determine the minimum starting speed of the pump if the manometric efficiency is 70%.	10	CO 4	L4

2. SEE Important Questions

Course: Crs Code:		Fluid Mechanics								
		18CV43	Sem:	IV	Marks:	100	Time:		180 minutes	
	Note	Answer all FIVE full questions. All questions carry equal marks.						-	-	
Mod ule	Qno.	Important Question						Marks	CO	Year
1	a	a. Define the terms i) Model ii) Prototype						10	CO1	2015

		iii) Model Analysis iv) Hydraulic similitude.			
	b	State and explain Buckingham Pi - theorem citing an example. Also explain its advantages over Rayleigh's method of dimensional analysis.	10	CO1	2011
	C	A 7.2 m high and 15 m long spillway discharges $94 \mathrm{~m} 3 / \mathrm{sec}$ of water under a head of 2 m . If a 1:9 scale model of this spillway is to be constructed, determine model dimensions, head over the spillway model and model discharge. If model experiences a force of 7500 N , determine force on the prototype.	10	CO1	2013
2	a	Prove that for a trapezoidal channel of most economical section : i) Half of top width - length of one ofsloping sides ii) hydraulic mean depth $=E / 2$ depth of flow	10	CO 2	2012
	b	What do you understand best hydraulic channel section? Derive the conditions for best hydraulic triangular channel section.	10	CO 2	2013
	C	Define specific energy. Draw specific energy curve, and then derive expressions for critical depth, critical velocity and minimum specific energy.	10	CO	2015
	d	The discharge of water through a rectangular channel of width 10 m , is 20 m when depth of flow of water is 2 m . Calculate i) Specific energy of flowing water. ii) Critical depth and critical velocity. iii) Minimum specific energy.	10	CO 2	2017
3	a	The rectangular channel of bed width 4 m is discharging water at the rate of 10 m . Determine the following : i) Critical depth ii) Minimum specific energy iii) What will be the type of flow in the depth is 0.6 m and 2 m .	10	CO 2	2012
	b	A sluice gate discharges water into a horizontal rectangular channel with a velocity of $5 \mathrm{~m} / \mathrm{sec}$ and depth of flow is 0.4 m . The width of the channel is 6 m . Determine whether a hydraulic jump will occur, and if so find its height and loss of energy per kg of water. Also determine the power lost in the hydraulic jump.	10	CO 2	2014
	C	Derive the differential equation for gradually varied flow and list all the assumptions.	10	CO	2015
	d	The specific energy for 6 m wide rectangular channel is to be 5 kg m / kg. if the rate of flow of water through channel is $24 \mathrm{~m} / \mathrm{s}$, determine alternate depths of channel.	10	CO 2	2016
4	a	Derive an equation of force exerted by a jet on an unsymmetrical curved vane tangentially,when vane K moving in the x -direction. Draw the velocity triangles and explain. Also find the workdone and efficiency.	10	CO 4	2016
	b	A jet of water moving at $15 \mathrm{~m} / \mathrm{s}$ impinges on symmetrical curved vane tangentially to deflect the jet through 120,find the angle of the jet so that there is no shock at inlet. What is the absolute velocity of the jet at exit in magnitude and direction and the work done per second per unit weight of water striking per second? Assume that the vane is smooth.	10	CO 4	2013
	c	Derive an expression for the work done per second by water on the runner of a Pelton wheel. Hence derive an expression of maximum efficiency of Pelton wheel giving the relationship between the jet speed and bucket speed.	10	CO 4	2017
	d	The water available for a Pelton wheel is 4 cumecs and the total head from the reservoir to the nozzle is 250 m . The turbine has two runners with two jets per runner. All the four jets have the same diameters. The pipeline is 3000 m long. The efficiency of power transmission through the pipeline	10	CO 4	2015

		and the nozzle is 91% and efficiency of each runner is 90%. The velocity coefficient of each nozzle is 0.975 and coefficient of friction " 4 f" for the pipe is 0.0045 . Determine i) the power developed by the turbine ii) the diameter of the jet and iii) the diameter of the pipeline.			
5	a	What is a draft tube? With neat sketch, list the different types of draft tube.	10	CO 4	2011
	b	A Kaplan turbine develops 24647.6 kW power at an average head of 39 m . Assuming a speed ratio of 2, flow ratio of 0.6, diameter of boss equal to 0.35 times the diameter of the runner and an overall efficiency of 90%, calculate the diameter, speed and specific speed of the turbine.	10	CO 4	2013
	c	Explain briefly the various types of efficiencies of a centrifugal pump.	10	CO 4	2016
	d	Derive an expression for the minimum starting speed for a centrifugal pump.	10	CO 4	2017
	e	A centrifugal pump runs at 1000 rpm and delivers water against a head of 15 m . The impeller diameter and width at the outlet are 0.3 m and 0.05 m respectively. The vanes are curved back at an angle of $30^{\circ} \mathrm{with}$ the periphery at the outlet iman $=0.92$ find discharge.	10	CO 4	2015

Course Outcome Computation

Academic Year: 2019-20
Odd / Even semester

INTERNAL	T1						T2					T3		
TEST														
Course	CO		CO		CO		CO	0	CO		$\mathrm{CO7}$		CO	
Outcome	1		1		2		2		3				8	
QUESTION	Q1	LV	Q2	LV	Q3	LV		Q1 LV	LV Q2	LV	Q1	LV	Q2	LV
NO														
MAX														
MARKS														
USN-1														
USN-2														
USN-3														
USN-4														
USN-5														
USN-6														
Average CO														
Attainment														
LV Threshold	: 3:>	60\%,	2:>	50\%	and	<60\%	, 1:	: <=4	49\%					
CO1 Comput	ation													

PO Computation

Program Outcome	PO1	PO 3	PO 3	PO1	PO12	PO 12	PO6	PO1
Weight of $\mathrm{CO}-\mathrm{PO}$								1
Course								CO 8
Outcome								
Test/Quiz/L	T1			T2			T3	
ab QUESTION NO MAX MARKS USN-1	Q1		Q3		Q2 LV		Q1	Q2 LV
USN-2								
USN-3 USN-4								
USN-5 USN-6								
Average CO Attainment								

